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ABSTRACT

The development of fully nonlinear GSrtler vortices in the high Reynolds number flow

in a symmetrically constricted channel is investigated. Attention is restricted to the case of

'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled

constriction height is asymptotically large. Such flows are known to develop a Goldstein

singularity and subsequently become separated at some downstream station past the point

of maximum channel constriction. It is shown t}?at these flows can support fully nonlinear

Ggrtler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which

have an appreciable region of local concave curvature upstream of the position at which

separation occurs. The effect on the onset of separation due to the nonlinear GSrtler modes

will be discussed. A brief discussion of other possible nonlinear states which may also have

a dramatic effect in delaying (or promoting) separation will be given.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. Introduction

Our concern is with the development of fully nonlinear G/Srtler vortices in Smith-

Daniels flows and their effect on the onset of separation. By Smith-Daniels flows we

refer to the steady flow in a symmetrically constricted channel considered by Smith and

Daniels (1981) who showed that when the scaled height, h >> 1, of the constriction becomes

large a secondary classical boundary layer of thickness O(h -1/2) is set up within the wall

boundary layer (of thickness O(Re -1/a) where Re is the global Reynolds number for the

flow). This inner, classical boundary layer develops a Goldstein (1948) singularity at a

position downstream of the position of maximum channel constriction. However, Smith

and Daniels demonstrated that this singularity could be removed, without any upstream

influence being induced, and their analysis was able to describe the reattachment of the

boundary layer at a distance O(h 3) downstream.

Subsequently Hall and Bennett (1986) considered the linear instability of this flow,

in the general context of the stability of both steady and unsteady interactive boundary

layer flows, at stream-wise locations before the Goldstein singularity develops. This study

demonstrated that the flow is unstable to G/Srtler vortices for channels in which the con-

striction has a region of concave curvature, in an interval before the position at which

separation occurs. In this analysis f_, where f(z) = hF(z) with h >> 1 is the constriction

profile, effectively plays the role of the Ggrtler number.

In the case of external boundary layer flows over a wall of variable curvature Hall

and Lakin (1988), motivated by the earlier weakly nonlinear theory of Ggrtler vortices by

Hall (1982b) and the numerical solution of the fully nonlinear G6rtler vortex governing

equations by Hall (1988), developed a self consistent asymptotic theory for short wave-

length, large amplitude G6rtler vortices. In this theory the G/Srtler number G scales with

k 4 (where k >> 1 is the vortex wave number). Their analysis demonstrated that the mean

flow adjusts due to the presence of the vortex so as to render all vortex modes neutrally

stable. Within an O(1) region of the boundary layer the mean flow is driven by the vortex

velocity field and as such has no relation to the unperturbed boundary layer flow. Such a

situation is similar to that postulated by Malkus (1956) for turbulent flows; Malkus argued



that the mean part of a turbulent flow would adjust so as to ensurethat all 'modes' are

renderedneutrally stable.

As pointed out by Hall and Lakin (1988), the modification of the mean flow by the

nonlinear longitudinal vortex motion raises the question as to what effect this modified

mean flow has on the onset of separation, in separating flows that can support GSrtler

vortex like disturbances..One important result of the Hall and Lakin calculation is that

the skin friction for the vortex induced meanflow canbe dramatically increasedover that

of the unperturbed boundary layer (although no quantitative results on this point are

presentedthis canbe inferred from their figure 6, Hall and Lakin (I988) pp 440 441); we

would then expect that the onsetof separation could be considerablydelayeddue to the

presenceof the vortex motion. In light of the work of Hall and Bennett (t986) alluded to

above, we chooseto concentrateon the Smith and Daniels (1981) problem of the steady

flow in a symmetrically constricted channel.

The procedure adopted for the rest of this paper is as follows. In §2 we develop

the governingequationsfor nonlinear GSrtler vortices in the O(h -1/2) classical boundary

layer of Smith and Daniels together with a discussion of the relevant results from Smith

(1982) concerning the onset of separation as well as the those points from the linear theory

of Hall and Bennett (1986) pertinent to the present investigation. In §3 we extend the

linear theory of Hall and Bennett (1986) to the fully nonlinear regime for short wavelength

vortices considered by Hall and Lakin (1988). In §4 we present the numerical solution

of the vortex induced mean flow equations. Finally in §5 a discussion of our results is

presented; particular emphasis is given to the effect that the presence of the nonlinear

vortex structure has upon the onset of separation.

2. Formulation of the governing equations

Consider the steady motion of an incompressible fluid of density p and kinematic

viscosity v in a symmetrically constricted channel. Let L denote the typical length scale of

the constriction and let Uoo denote the typical free stream speed sumciently far upstream

of the constriction (see figure 1). We define the Reynolds number Re by Re = UooL/v,

and throughout this work we will assume that the flow is such that the Reynolds number



is asymptotically large. The steady three-dimensional Navier-Stokesequations in nondi-

mensional form are

Ou Ov Ow

0x+N + Oz o,
Ou Ou Ou Op

U-_x + v--_y + W Oz Ox

Ov Ov Ov Op
u-_z + "-_y + Woz Ou

Ow Ow Ow Op
u--f;x + v -_y + w Oz - Oz

+ Re -1 \Ox z

( 02v
+ t_e-_ \-6_x2

+ -hfi  + az2) ,

0% 02 v _

+ R_ -t \ Ox2 + _ + Oz2)

(2.1)

where (x, y, z) are the usual Cartesian co-ordinates, nondimensionalized with respect to

L, (u, v, w) are the corresponding velocity components, nondimensionalized with respect

to the upstream velocity Uoo and p is the pressure, nondimensionalized with respect to

pU_. For definiteness we will assume, following Smith (1982), sui:l:iciently far upstream of

the channel constriction the flow is Poiseuille

2x

u _ y -- y2 V _ 0, P -'_ Re' x _ --(:_.

As shown by Smith (1982), with a constriction length L = O(1), the critical height of the

constriction is O(Re -1/3) (Smith's 'strong constriction'). We then take the constriction

y = hRe-1/3F(x) at the lower wall (a corresponding constriction y = 1 - hRe-I/3F(x)

is also present at the upper wall, however here we are predominantly concerned with the

boundary layer flow in the vicinity of the lower wall and as such we will restrict our

attention to the lower boundary); we will subsequently take the limit h >> 1 (this being

the appropriate asymptotic regime of the Smith and Daniels (1981) investigation) however

we initially consider 0 < h < oo. The flow develops a viscous wall layer of thickness

O(Re-I/3), in which the velocity field and pressure expand as (Smith (1982))

(u, v, w, p) = (Re-a/3U, Re-2/3V, Re-2/3W, Re-2/3po + Re -4/3 I°1 ),
(2.2)

x = 0(1), y = Re-a/3Y, z = Re-1/3Z,

= 3



where P0 is a function of x while P1 is a function of x, Y, Z. The governing equations in

the viscous wall layer are then given by

OU OV OW

0x +V_+_ -=°'
OU OU OU OPo 02U 02U

g-g-;x+ v-g-_ + w-g-_ - Ox + _ + oz----_'

uOV OV OV OP1 02V 02V
Ox + V-_-_ + W OZ - OY + -O--Y-7 + OZ--_'

u OW OW OW 0t:'1 02 W 02W
Ox + V--_-_- + W _ - OZ + OY--_ + OZ------r'

(2.3)

together with the boundary conditions

(_,v,w,p) --, (v, o, o,o) as x --, -_,

u = v = w = 0 on Y = hF(x), (2.4)

U,,oy Y_c_.

Here we have anticipated the well known result that the Ggrtler vortex wavelength is scaled

on the boundary layer thickness.

In the asymptotic limit h >> 1, Smith and Daniels (1981) have demonstrated that the

flow described above develops a classical boundary layer of thickness O(h -1/2) attached

to the hump. In the absence of any vortex component the appropriate scalings are found

to be

U = hft, V = hl/2O, Po = h2P _ = hU2Y.

From the analysis of Smith and Daniels (1981) the governing equations are given by

O_ O_ 02_ O_ O_

ft-_x + _-_ = FF. + 0----_, 0---_-+ 0--_ = 0, (2.5a, b)

together with the boundary conditions

g=O=O, _=0, _F _f --+ oc, (2.6a, b)

and the upstream conditions

u, v _ 0 x --_ -oo; (2.6c)



(here we are assuming F(x) _ 0 as x _ -ec and we have made use of the Prandtl

transformation). We note that in (2.5a) the pressure gradient term -FFx arises from the

outer flow solutions (the reader is referred to Smith and Daniels (1981) for full details).

Subsequently we will assume that the constriction profile is such that F(x) = 0 for x < 0

so that the upstream condition (2.6c) can be replaced by

u, v = 0 x < 0. (2.6d)

To derive the governing equations for the GSrtler vortex velocity field, which we

assume is confined to the secondary O(h -a/2) boundary layer, the following scalings are

employed (see Hall and Bennett (1986)). The x, y and z disturbance velocity components

scale with the x, y and y basic state velocity components; the y and z variations are on

the classical boundary layer scale, namely 0(h-1/2), and the pressure perturbations are

reduced in size until the pressure gradient and viscous terms in the y and z momentum

equations become comparable. Thus

= hl/2y, z = hl/2z,

U = hu, V =-hl/2v, W = hl/2w, P0 = h2p, P1 = hp.
(2.7)

The governing equations are then given by

Ou Ov Ow

o--_+ -_ + oz o,
Ou Ou Ou

+ vyg + Wy;z
Ov Ov Ov

+ vgg + wG + h3/ Fx uU -_x

Ow aw Ow

u--_x + v-g-( + w Oz

0 2 U 0 2 U

-- FF_ +-0-_ + Oz2,

Op 02v 0%
- a_ +-o-( i+ az----7'

ap O2w a2w
- Oz + -_ + Oz----_'

(2.8a - d)

together with the boundary conditions

u=v=w=O _=0,

u ---,F, v¢,w _ O (---, ec, (2.9a -- c)

u,v,w = 0 x <_ O,

where we have made use of the Prandtl transformation.



Our concern is with the solution of the nonlinear system (2.8,9) in the limit of short

spanwisewavelength, O/Oz >> 1. Before proceeding with a description of the solution of

these equations we make some comments concerning the unperturbed system (2.5,6) and

recall the relevant details from the linear theory of Hall and Bennett (1986).

In practice the solution of the system (2.5,6) is a numerical task; we briefly describe

the numerical technique used to solve this system. In order to obtain solutions of (2.5a,c)

to within the numerical accuracy required for the subsequent calculations of §4 it was

found to be advantageous to solve a modified system obtained from (2.5) by writing

= F_0, _ = -F,¢ + _0,

where (u0, N0) are governed by

__ 0fi0 0_0

F_02 + ru0 0---_- + (N0 - Fx_) 0_

F O_O 0_o
Ox + 0¢ -0'

02_0

,

with the appropriate free stream boundary condition now given by

u0 ---* 1 _ ---+oo;

all other boundary conditions remaining unchanged. This modified system was discetized

according to

Fun (tn 1
- - + rx(1 - ,,2.)

(v. - F_.)(u,,+, - u._,)

2h

- F(u,, -
= - F_(_. - 1),

2h e

(2.10a, b)

where a tilde denotes a quantity evaluated at x + e and the index n refers to a quantity

evaluated at the grid point _ = nh; we explicitly impose the boundary conditions (2.6a,b,d).

Given u,, vn and F the tridiagonal system (2.10a) can be solved for the updated value fin;

_, is then determined from (2.10b). The solution was marched downstream from x = 0,



with the initial conditions (2.6d), iterating at eachstep until convergedvaluesof _ and

were obtained. For definitenesswewill restrict our attention to the hump profile

0, x < O,

F(x) = _e-'(x4/16 - x 3 + 4x2), 0 _< x < 4, (2.11)

o_x2e -z2/16, x > 4,

where c_ is an amplitude parameter. Consider now the boundary conditions (2.9b). As

noted by Smith (1982) the boundary layer is accelerated where Fx(x) > 0 (upstream

of the point of maximum constriction x = Xm_x = 4). Downstream of Xmax the flow is

decelerated due to the adverse pressure gradient -FFx; the skin friction then tends to zero,

the Goldstein singularity is encountered and the boundary layer flow becomes separated.

In figure 2 we present a plot of the skin friction 7(x) = fi_(x, 0) versus x for the profile

(2.11) and the particular choice c_ = 1.03I. We see that 7" attains a maximum at x .._ 2.9

and then decreases until r = 0 at x = xs "_ 4.53 at which point the Goldstein singularity

will arise and separation will occur. We note that changing the amplitude o_ has no effect

on either the position at which r attains its maximum nor the point at which _- = 0. Our

interest lies in the effect that the presence of a fully nonlinear vortex structure upstream

of Xm_x may have in delaying (or promoting) the onset of separation.

The linear theory of Hall and Bennett (1986) demonstrates that the boundary layer

becomes unstable to linear GSrtler vortices at the position x* where

: 1, (2.12)
2F** 0_ (_,,_.)

and are confined to a thin layer about the position _ = _* where

00( _i = 0. (2.13)
(=(*

As noted by Hall and Bennett, for humps with F > 0 (ie channel constriction) fi_ remains

positive until the Goldstein singularity develops, at x = xs say, and hence for instability we

require the constriction to be locally concave somewhere in the interval 0 < x < xs. The

profile (2.11) was chosen with this in mind; it is locally concave in the region 0 < x < 1.69.

7



As an aside, we note that, from the results of Hall and Bennett, there is a critical

amplitude a below which instability cannot occur (see expression (3.15) and the preceding

discussion in Hall and Bennett (1986)). In figure 3 we present a plot of the neutral

position x* versus the amplitude a for the profile (2.11); we find the critical amplitude to

* <x* < * in which the flow canbe o_ = o_c _ 0.84. For ot > o_c there is a finite interval x 0 _ _ x 1

support linearly unstal_le GSrtler modes and this interval increases with increasing o_.

3. Evolution equations for large amplitude GiSrtler vortices

We now proceed to develop an asymptotic solution of the governing equations (2.8a-

d) valid in the short wavelength limit. We assume that the solution (g(x, _), _(x, {)) of the

classical boundary layer equations (2.5a,b) becomes linearly unstable to GSrtler vortices

at x = x* where x* is to be determined from (2.12).

In the O(h -1/_) boundary layer the effective GSrtler number G becomes O(h al2) so

that, on the basis of the nonlinear theory of Hall and Lakin (1988), we anticipate vortices

with wavenumber k = O(h a/s) (the scaling G = O(k 4) is that which is appropriate to the

right-hand-branch of the linear neutral curve, see Hall (1982)). At first sight these scalings

appear to be in disagreement with those presented in Hall and Bennett (1986); in fact,

there is no discrepancy when one considers the boundary layer scalings (2.7). The analysis

of Hall and Lakin demonstrates that in the presence of the nonlinear vortex state the

flow regime breaks up into three regions; a central core region, in which the mean flow is

induced by the vortex velocity field, which is bounded above and below by thin shear layers

in which the vortex amplitude is reduced to zero. Outside the region of vortex activity the

mean flow is governed by the unperturbed boundary layer equations (see figure 4). We now

proceed to develop the corresponding structure for the flow described in §2; we emphasize

that the nonlinear vortex state will be confined wholly within the O(h -112) boundary

layer. Hence, we axe anticipating that the only effect on the onset of separation due to the

presence of the nonlinear vortex state is that the poaition at which separation occurs will

be changed; the asymptotic analysis of Smith and Daniels concerning the removal of the

Goldstein singularity still remains valid. As the analysis mirrors that of Hall and Lakin we



will give only the salient features of that calculation (the reader is referred to that paper

for full details).

To proceedwe first consider the coreregion, in which the vortex amplitude is chosen

so as to have an O(1) effect on the mean flow in this region. The appropriate expansions

in the core region are then given by

u=_o+h-3/S{Uolcosh3/Sz+...},
(3.1)

v = _o + _3/8 { Vol cosh3/S z + ...} ,

together with similar expansions for w and p; here • • • denotes terms which do not enter into

the subsequent analysis. Substituting the expansions (3.1) into the governing equations

gives, for the vortex components

U01 qt_ _0_V01 = 0, V01 + 2_0Fx,U0a = 0, (3.2a, b)

i

which for consistency requires

2F**fi0fi0_ = 1. (3.3)

Integrating (3.3) yields, for the vortex induced mean flow

IA(x)+ 
u0---- V -_x: ' (3.4a)

while from the continuity equation we have

_o = -U(x)- A_ + _ F_ ; (3.4b)

here A(x) and B(x) are to be determined. Thus, in the core region the mean flow is found

from a solvability condition on the vortex amplitude equations. At this stage the vortex

amplitude V0a remains undetermined; this is found from the mean flow component of the

first momentum equation. Thus

_ 0_0 0_0 02_0 FFx_IO (O_to 2)uo--_-_x + _o O_ O_2 20_ -_ V61 '

9



which making useof (3.4) can be integrated to give

B,/--_+{ F_x(A+{) 2 1 -FFx{. (3.5)
1 V:l = - V -F-f; 6F 2 - 2v/F_(A + _)C(x)+ 4x/F_(A + _) _

If we let _j(x) (j = 1, 2) denote the outer limits of the region of vortex activity we then

have from (3.5), upon eliminating C(x), a relation between _a and _2, namely

fiX+ _2
/---A+_a F_(A +_a) 2 1 - FF_' = -B v -F--_:

-BY -FS; 6F2_ - 2v/F_(A + _1) (3.6)

_ F***(A + _2) 2 _ 1 - FF._2.
6F2x 2x,/F**(A + _2)

Thus, the vortex amplitude in the core region is reduced to zero as _ _ _a,2; however we

require thin shear layers centred on _1,2 in order to smooth out the algebraicaliy decaying

vortex component. We note that at this point of the analysis we are unable to determine

the functions A(x), B(x), _,(x) and (2(x).

We now consider the solution in the shear layers. As noted by Hall and Lakin, the

thickness of these layers is found by balancing diffusion across the layer with convection

in the stream wise direction. In the case under consideration such a balance shows the

thickness of these layers to be O(h-1/4). We then write

7/= h1/4(_ - _2),

and in the shear layer we replace O/Ox and 0/0_ by O/Ox - hl/4_O/Orl and hl/40/07],

respectively. We will subsequently restrict our attention to the shear layer centred on _2;

an identical analysis holds in the layer centered on _ = _1.

From the core solutions (3.4-5) the appropriate expansions in this shear layer are

found to be

It : lt% + h-1/4_ 1 --_h-1/2_ 2 --[-...--_- h -1/2 {(ltOl-Jl- h-1/41tll--]-"')cosh3/8z --_"'} ,

v :Vo -_- h-1/4Vl-_-..--_- h 1/4 {(vOl-Jr- h-1/41111--[-'")cosh3/8z --[-'"},

10



together with similar expansionsfor w and p. Substitution of these expansions into the

governing equations we find that, after some trivial manipulations, the leading order mean

flow terms are given by

= ,/_. + 42 = =
uo= V ' +

+ ( A + ) 3/2v° = -B(x)- A" v .F_: + -F-_; '

(3.7a, c)

where we have made use of matching with the core solutions in the limit 77---* -oc. The

governing equations for the leading order vortex amplitudes (u01, v01) are found to be

consistent whereas the equations for (u11, v11) are consistent provided that

02vol S(x),Tvol

Oq 2 3

1 3

_-_ 5V01 -Jr- fl(g)VOl

which gives the governing equation for the vortex amplitude V01. Here

S = -2B 4Fx_{A+(2} 3/2 13 F_----_ + A+_2
4FF. v/Fx.(A + _2),

and fl is a funcion of x, the precise nature of which is not required here. This equation is

a modified form of the second Painlev6 transcendent and has been shown to have a unique

solutiSn, Hastings and McLeod (1980), with the asymptotic behaviour

It then follows that the vortex is constrained to lie below _ = _ (a similar analysis of the

shear layer about _1 shows that the vortex is constrained to lie above _ = _1) so that the

nonlinear vortex is confined to the O(1) core region. We note from (3.7a-c) that the mean

flow in the shear layer is essentially unaltered by the presence of the vortex (in fact, the

first two terms in the stream-wise mean flow expansion in this layer are obtained from

the Taylor series expansion of the core flow about _2). Hence the mean flow outside the

core region must have u, u_ and _, in the limits _ _ _-, _+, defined by the core solution

evaluated at _ = _1,2 respectively.

11



Outside the regionof vortex activity there is only a mean velocity field and we write

U : tt -_- O(h-l/2), y = _ -_- 0(h-1/2),

where (_,s), defined in (0,(,) and (_2, oo), satisfy

0_ 0_ 02_

_N + _N = 0(--5- + FEz,

This system is to be solved subject to

+ _ = 0. (3.8)
uq

_=_=0, (=0, _F, (_oo, (3.9a, b)

and

,/-A__+ (j
u(_J)= V _'-;-_' _(_J) =

_((j) = -B(x)- A, v F_:

2v/F**(A + (j)'

__+_5_( A+(j\ )_-Z)
3/2

(j = 1,2) (3.9c- e)

The system (3.8,9) together with (3.6) then specifies a free-boundary problem for _a(x),

_2(x) and the functions A(x), B(x) together with the skin friction fi_(x, 0). The solution

of this system is a full numerical problem (we note that the similarity reduction available

to Hall and Lakin is not applicable here). Before proceeding with a discussion of the

marching procedure used to solve this system we note that, in order to solve (3.8,9), it is

necessary to specify an 'initial state' for the mean velocity field from which the solution

can be obtained in a systematic way by marching downstream. This requires finding an

asymptotic form for the solution close to the position x* at which the original boundary

layer becomes unstable.

We assume that the unperturbed boundary layer flow first becomes unstable at the

position x = x* and that the instability originates in a thin layer centred on _ = _*. We

define X = x - x* << 1 together with the similarity variable r1 = (_ - _*)/X 1/2 and expand

_1 and _2 in the form

6 =C-x_/_+o(x),
(3.10)

_2 = _* -_- X1/2_ Jr- O(X),

12



(theseexpansionsfollow from the weakly nonlinear theory of Hall (1982b)). Consider first

the core region; following Hall and Lakin (1988)we express(_0,%) in the form

_,o = _ + X3/2UM(7) +"', _o = _ + XVM(7) +"', (3.11a, b)

where (fi,_) are the boundary layer velocity components in the absence of the vortex

motion. In a small neighbourhood of the neutral location (x*,_*) we have the Taylor

series expansions for (fi, _) and Fx_ given by

: UO0 "_ xl/27UlO --_ X(72u20 + u01) -+ X3/27u11 -_- ...,

= VO0 AV X1/27vlo -_- X(72v20 -[- v01 ) -_- X3/27Vll .AV ... (3.12a - c)

G. = Fo +xF_ +....

Substituting (3.11a,b) together with (3.12a-c) into (3.3) and equating like powers of X

gives

where

2Fouooulo = 1,

UM = AoT- A173,

u120 + 2u00u20 = 0,

Ao7 2
VM -- + V_vl ,

2

(3.13a - c)

72101/01 FlUlO UlOU2O

Ao ---_ --Ull .... ,_1 --
U00 F0 _ u00

and V_ is a constant of integration (required to ensure continuity of VM across the shear

layers). We note that (3.13a) is automatically satisfied as x* is the neutral position, while

(3.135) is satisfied since _* is chosen so that (2.13) holds.

Following Hall and Lakin (1988) we can show that the vortex amplitude V01 vanishes

at 77= 7+ where

Co + 2Ao (3.14)
]7+J2 = 6,_1 + u00M'

with Co a.n unknown constant to be determined. It then follows from (3.10) and (3.14)

that

7- 7+=

To determine 7+ it remains to determine the constant Co.

13



Outside the region of vortex activity we now write

u = u+ X3/2UM(n) +'", v = _+ XVM(n) +'".

We note that the functions UM and VM are, respectively odd and even functions of _ and

so we will restrict our attention to the region 77>__S+. Here we find that UM, VM satisfy t

d2UM+uo°( d )d.T y .7_-3 u.=o.

dVM 3 T] dU M _ O,d---C+ _UM-- "2 d,7

(3.15)

which are to be solved subject to the matching conditions

(3.16a)

and

U M --_ O rl ---_ e_. (3.16b)

The appropriate solutions are found to be t

_ u00(x0,+ ,_l,7.1_)exp{-_00(,: - ,_)/s} u(7/2, v'_-_,7)
UM -----

u(7/2, v/-_ ,7+)
71

VM : -_UM -- 2 UMdTI,

O0

(3.18a, b)

where U(a, x) is the parabolic cylinder function. From (3.17a) and (3.18a) we then have

the eigen-relation _ for r/+

(3.19)

which then determines the constant Co in (3.14).

With the above asymptotic solution, valid near x*, we can construct the composite

velocity field together with initial values for the function A(x), B(x), (1 (x) and (2(x) which

will then be used to start the marching procedure to be described in the next section.

tNote the typographical error in the corresponding expressions of Hall and Lakin (1988).

$ibid.
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4. Numerical solution of the free boundary problem

The numerical scheme used to solve the free boundary problem (3.8-9) is based on that

used by Hall and Lakin (1988); for this reason we only give the relevant details here. We

assume that a solution is known for x* _< x _< :_ (which in practice must be constructed

from the asymptotic solution for the initial development of the nonlinear vortex state

presented above). The scheme then advances this 'initial' solution downstream to _ + e for

some sufficiently small value of e.

In the course of our calculations it was found appropriate to solve a modified system

of the form outlined in §2. Thus we define

fL= Fu, _ = v - G(.

The numerical scheme then proceeds by defining a new variable ¢ by

¢=_j j=l, 0_<(_<(l, j=2, (2_<__<¢x).

The modified form of the system (3.12) is now written as

F u __z _Jl -_02u _ F_(1- u 2) - (v - _JF_J¢) -_Ou + --_--Jg' u -5¢ 'F_} ' Ou

0---_= (j F_(1-u)- Ox + -_j -_ '

(4.1a, b)

where j = 1 for 0 < ¢ < 1 and j = 2 for 1 < ¢ < ec. This system is to be solved on (0, co)

in terms of ¢ with boundary conditions

u=v=0, ¢=0, u_l ¢-+oo, (4.2)

together with the discontinuous conditions at ¢ = 1

1,//-__ + (j (3

u+ = FV -F_: ' u,+ = 2Fv/F_( A + _j),

v± = -B- A. v F--.2 + _ \ -F-_: + Fx_j.

(4.3a, b)
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Here the + signs corresponds to the limits ¢ _ 1 +, ¢ _ 1- while the index j = 1 is

associated with the '-' sign and j = 9. with the '+' sign. The system is then closed by the

condition (3.6).

The solution of (4.1a) is advanced for ¢ in the range 0 _< ¢ _< 1 by using the scheme

C

Fun_n h232(_n+l-2fz,+_,,-l)=Fu2n-eFz(1-u2,)
-j
e (4.4)

2 jh(vn- F  jCn- FCn }un)(u,,+1--un-1),

where h is the verticalgrid spacing, a tilde denotes that the quantity is evaluated at

+ e while an index n indicates a quantity evaluated at the grid point ¢ = nh. In order

to solve the tridiagonalsystem (4.4)we must make an initialguess for _I and then set

(_ -- (_ - (1)/_. In solving (4.4)we ensure that the boundary condition on u at _ = 0

and (4.3b),with j = I, are satisfied.The solution of (4.4) then yields _n. We discretize

the modified continuity equation (4.1b) as

5,,+1-73n-1{2h =_j F_(1-_.)+ F(un--Un) fi"_)n_(_n+l_-_ _nl)}_ + _ , (4.5)

which, given fin from (4.4), allows us to determine _,, at the position _ + e for 0 < ¢ < 1.

As the equation for 5 is first order in ¢ only the boundary condition on _} at ¢ = 0 can

be satisfied. Thus, although the solution of (4.1), for ¢ in the range 0 < ¢ < 1, has been

obtained at _ + e the additional boundary conditions (4.3a,c), with j = 1, have not been

satisfied. These conditions can now be used to obtain a value for A and an improved value

for (1 by writing them in the form

Here/_ is the current guess of B at _ + e. This scheme can be applied in a similar manner

to the region ¢ > 1. The equation (4.4) is now solved for _ subject to fi ---* 1 as ¢ ---, oe
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together with (4.3b) for j = 2, and equation (4.5) is solved for _ subject to (4.3c) with

j = 2. Writing (4.3a) and (3.6) in the form

_ aL XX .3ff --

+ +

1}
(4.6c, d)

the first of which then determines a new value for _2 while the second equation yields a

value for/_. We then have values of u, v, A, B, _1 and _2 at :_ + e. This procedure is then

continued, making use equations (4.6a-d), using Newton iteration on A, B, _1 and _2 until

converged values of these quantities are obtained.

For definiteness, our numerical calculations were restricted to the profile (2.11). The

first stage in the numerical solution of the free boundary problem (3.8,9) involves deter-

mining the neutral position from (2.12,13). This was achieved using the numerical scheme

outlined in §2; with the initial conditions _ _ = 0 at x = 0 the solution was marched

downstream, at each stream-wise location _* was determined from (2.13), until the point of

neutral stability x*, determined from (2.12), was reached. At this point an initial guess for

_1(_), _2(Y:), A(_') and B(Y:), for :_ = x* +0.001, was obtained using the procedure outlined

at the end of §3. The initial condition required for the velocity field at Y', namely fi(Y', _)

and _(Y:, _), were obtained using the scheme (2.10) and these values were then interpolated,

using cubic spline interpolation in order to ensure continuous second derivatives, to yield

and _ on a uniform grid in ¢ in the intervals [0, 1) and (1, ¢oo). A similar interpolation

procedure was used on the vortex induced mean flow corrections Urn, V,, thus allowing the

composite velocity field to be computed. The composite velocity field so obtained was then

used as the initial conditions for the marching scheme described above. The solution was

marched downstream until such point as the limit of the region of vortex activity tended

to zero (ie at the point kF where _l(3:F) : _2(_'F), see figure 4). At this point the velocity
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field was then used as the initial condition for the scheme(2.10) which was then used to

march downstreamuntil suchpoint at which reversedflow is first encountered.

5. Conclusions

Beforeproceedingwith adiscussionof our resultswemakesomecommentsconcerning

the stability characteristicsof our numerical scheme.Initially the normal step size h was

fixed at h = 0.01 with _/,_ = 16 thus yielding 100 and 1500 normal grid points in the

intervals 0 _< _b _< 1 and 1 _< _b _< _boo, respectively. With h fixed, various calculations

were performed with different values of the streamwise step-length e; from e = 0.001 to

e = 0.00025. For the range of e considered the position XF, at which the vortex region

vanishes, was found to vary by, typically, 0.9% over the value obtained for the smallest

value of e considered. Similarly, the normal position _s was found to vary by 0.7% over

the range of e considered. We deem our numerical scheme to be stable and for e = 0.00025

suitable accuracy has been attained. All of the subsequent results were obtained for the

choice of parameters h = 0.01, e = 0.00025 and _bo_ = 16.

Consider figure 5, in which we present a plot of the positions {1 (x) and {2(x) bounding

the region of vortex activity for the constriction amplitudes o_ = 1.0304 and o_ = 1.0923.

As anticipated from the results of Hall and Lakin (1988) we see that the region of vortex

activity initially thickens until such a point at which the maximum normal extent of this

region is achieved. As x is further increased, the region of vortex activity constricts until

the point XF at which _l(xg) = _2(XF). For x > XF the flow can no longer support the

large amplitude vortex state described above.

The effect of increasing the amplitude a of the constriction is evident from a com-

parison of figures 5a,b. The minimum values of _1 in figures 5a,b are 2.19 x 10 .2 and

1.08 x 10 -2 respectively whereas the maximum values of _2 are 1.384 and 1.752 respec-

tively. Thus the effect of increasing a is twofold; firstly the streamwise extent of the vortex

region is increased with increasing a (a consequence of the change in the neutral positions

as represented in figure 3) and secondly, the normal extent of the vortex region increases

with increasing c_, through both the increase in the maximum value of _2 and a decrease

in the minimum value of _1.
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Turning now to the question as to what effect the nonlinear vortex state, present

in the interval (x*,Xg), has upon the onset of separation we present, in figures 6a-b,

plots of the skin friction in the presence of the vortex (broken line) and, for comparison,

the corresponding skin friction for the unperturbed boundary layer (solid line), for the

representative cases a = 1.0304 and o_ = 1.0923. Here the skin friction is defined according

to

= F(x) Ou(x,o) _ au(x,O) (5.1)
5(x) a¢ '

where ¢ is the modified independent variable and u is the modified dependent variable used

in the numerical scheme described above. From a computational standpoint we replace

(5.1) by

_- = F(x) Ou(z,0) _ F(x) {4u(x,_) - _(x,2h)} + O(h2). (5.2)
_l(x) 0¢ 2h_l(x)

The effect on the boundary layer due to the vortex is readily seen through the dramatic

increase in the skin friction (over that for the unperturbed state). In the presence of

the vortex the skin friction now develops two maxima, the first being due to the vortex,

whereas the second is seen to coincide with that for the unperturbed state. The ratio of

these maxima is seen to increase with increasing (_; for the case of figure 6a this is found

to be 73% while for figure 6b is 93%. However, in both figures 6a,b we see that the vortex

induced skin friction subsequently decreases to below the value found for the unperturbed

state followed by an increase, due to the presence of the favourable pressure gradient, until

such point as the second maxima is attained (at which point the difference between the

vortex induced state and the unperturbed state is barely discernible). The skin friction

now decreases until the point of separation is encountered, the location of which is identical

for both the unperturbed state and the case in which the flow supports a nonlinear vortex.

We are then given to conclude that the presence of a nonlinear vortex, in a region

of concave curvature upstream of the position of maximum channel constriction, has no

discernible effect upon the position at which separation is encountered. This result is

somewhat surprising in light of the comments of Hall and Lakin (1988) (pp 443) that the

decay of the vortices does not allow the boundary layer to return to its undisturbed state.

In the present case it would appear, by the position at which separation is reached, that
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the boundary layer does, in fact, return to its unperturbed state. In figure 7 we present

a plot of the streamwise velocity, for the case of the unperturbed boundary layer and the

case when the vortices are present, at the position ZF.

In the analysis presented we have ignored two other possible mechanisms for linear in-

stability and subsequent nonlinear growth, namely Tollmien-Schlichting waves and inviscid

Rayleigh modes (see Tutty and Cowley (1986) for a discussion of the Rayleigh instability

in interactive boundary layer flows). The nonlinear development of these modes, together

with the possible importance of the vortex-wave interaction mechanisms described by Hall

and Smith (1988), could have a dramatic effect on the results and conclusions of this work.

Finally, for the (somewhat more realistic) case of moderately constricted channels, for

which h = O(1), the effective G6rtler number is now an O(1) quantity and we would expect,

on the basis of the linear theory of Hall (1983) for vortices with an O(1) wavenumber, that

the flow will support linearly unstable GSrtler modes. The extension into the nonlinear

regime then involves the numerical solution of the full nonlinear governing equations as

was carried out by Hall (1988) for the external boundary layer problem. In the present

case the governing equations show distinct similarities with those derived by Denier and

Halt (1992) to describe the nonlinear evolution of the most unstable G6rtler vortex mode

the solution of which resulted in a separated flow. In the context of an O(1) constricted

channel, the resolution of this problem would require the numerical solution of the full

nonlinear governing equations. This is currently the subject of ongoing research.
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Figure 1. A sketch of the flow configuration under consideration.
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Figure 2. Plot of skin friction r = 8_(x, 0) versus x for the profile (3.3).
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critical positions for a > ac.
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Figure 5a. The region of vortex activity; shown is a plot of _l(x) and _2(=) versus x. (a)

-- 1.0304, (b) o_ = 1.0923.
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Figure 6a. Plot of the skin friction -r in the presence of the vortex (broken line). For

comparison the skin friction in the absence of the vortex is presented (solid line). The

• represent the position at which the vortex region has decayed to zero (ie XF). (a)

o_ = 1.0304, (b) a = 1.0923.
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